
D. A. LANGS, R. MILLER, H. A. HAUPTMAN AND G. W. HAN 87 

direct-methods solutions are indicated often fail at 
low resolution (Woolfson & Yao, 1990; Gilmore, 
Henderson & Bricogne, 1991), making it difficult to 
identify the more likely solution sets among the 100 
that were computed. SnB recycling has been formu- 
lated to produce a single density map with the 
likelihood that it is a marked improvement over the 
best of those computed by multisolution tangent- 
formula recycling methods. 

Concluding remarks 

The minimal function has been shown to be a power- 
ful new tool in fragment-recycling applications 
involving small fragments, large unknown r.m.s, dis- 
placement errors in the model and low-resolution 
data. Although SnB fragment-recycling calculations 
are five to ten times more computer costly than 
tangent-formula recycling methods, they may pro- 
vide a solution when the more economic tangent- 
based solution methods fail. 
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Abstract 

It has long been believed that superposition of 
Debye-Scherrer lines caused by symmetry of the 
reciprocal lattice should suppress true information 
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on Laue symmetry of crystal systems with high 
symmetry: trigonal, tetragonal, hexagonal and cubic. 
An interpretation of intensities at superposed 
reciprocal-lattic points reveals that Laue classes of 
polycrystalline materials can be identified from con- 
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centrations of vectors in vector space, that is, from 
distributions of Patterson peaks. Determination of 
Laue class enables us to make structural studies of 
polycrystalline materials with the same process used 
in single-crystal studies. 

Introduction 

A diffraction method for polycrystalline materials 
(Debye & Scherrer, 1916; Hull, 1917) has so far been 
utilized in various fields of research and industry. 
The role played by the powder method in identifica- 
tion of crystalline materials is very important. On the 
other hand, because of the development of single- 
crystal diffractometers controlled by small electronic 
computers, structure determination with single- 
crystal specimens has become the mainstream of 
structural studies. Structure determination by the 
Debye-Scherrer method has only been applied to 
samples for which single crystals with sufficient 
volume are unavailable, samples for which reduction 
of extinction effects is necessary and samples having 
distinct problems. 

Recently, the Rietveld method has been developed 
for structural studies of polycrystalline materials by 
neutron diffraction (Rietveld, 1967, 1969). Since 
then, the method has also been applied to studies of 
crystal structures by X-ray diffraction. Recent pro- 
gress in developing new equipment, especially that 
installed at synchrotron-radiation facilities, enables 
us to measure many more intensities diffracted from 
a very strong and highly parallel incident beam. The 
shortening of the time necessary for measurement of 
diffraction with such strong intensity and improve- 
ments in sample preparation techniques have also 
promoted structural studies of polycrystalline 
materials. 

The process of structure determination with dif- 
fraction data of a single crystal consists of: (1) 
construction of the reciprocal lattice from diffraction 
angles; (2) determination of Laue class; (3) 
assignment of possible space groups from observed 
extinction rules; and (4) determination of phases of 
Ifobsl's. However, the process of structure deter- 
ruination of polycrystalline materials encounters two 
difficult problems. The first problem to be solved is 
that of the indexing of a set of observed powder 
lines; that is, the reconstruction of a three- 
dimensional reciprocal lattice from the one- 
dimensional data set. The second is determination of 
the Laue class from the symmetry of the intensity 
distribution. There are two possible Laue classes, 
holohedral and hemihedral, for the crystal systems 
with trigonal symmetry of symmetries higher than 
trigonal. Although the first problem was resolved for 
crystals with symmetry higher than monoclinic (see 
e.g. Hull & Davey, 1921), it has long been believed 

that it is impossible to distinguish hemihedral Laue 
classes from holohedral ones when only diffraction 
data for polycrystalline materials are available. How- 
ever, we have discovered a method to identify Laue 
classes using symmetry information extracted from 
diffraction data of polycrystalline materials. We 
report the details of this discovery in the following 
sections. 

Symmetry of intensity distribution in reciprocal space 

Let us consider the reciprocal lattice weighted by 
IF(hkl)l 2 of a single crystal for interpreting sym- 
metry of diffraction of polycrystalline materials. In 
cases where the symmetry of the crystal system is 
trigonal or higher than trigonal, unit lengths of two 
or three reciprocal axes are equal and the plane 
bisecting the axial angle of those axes is a mirror 
plane when the symmetry of the weighted reciprocal 
lattice is holohedral. For hemihedral symmetry, the 
weights of reciprocal-lattice points are not equal to 
those of the points corresponding to their mirror 
image, for example, IF(hkl)12's are not equal to 
IF(khl)12's when the Laue class is 4/rn. Hereinafter, 
we denoted the holohedral symmetry of the recipro- 
cal lattice G and hemihedral symmetry L. L is a 
subgroup of G in those cases. Since the same coordi- 
nate system as the hexagonal one can be chosen for 
the trigonal system, we may consider that there are 
three L's and one common G for both systems. If G 
and L are decomposed into each irreducible system 
of generators, G has n extra generators gn that are 
not included in L. n is usually 1 but is 2 when we 
compare the numbers of generators of 6/mmm and of 
3. Thus, 3 can be regarded as tetartohedry of 
6/mmm. 

Each crystallite of a polycrystalline sample for 
diffraction measurement is oriented randomly and its 
reciprocal-lattice points are distributed on spheres 
with a common centre at the origin of reciprocal 
space. Every Debye-Scherrer line is consequently a 
superposition of diffracted beams from the 
reciprocal-lattice points at equal distances from the 
origin. Hereinafter, we discuss only the cases where 
the superposition is caused by rotation or rotatory 
inversion symmetry of the reciprocal lattice. The 
intensity of a peak is therefore a sum of the intensi- 
ties of the superposed reciprocal-lattice points and 
the number of superposed equivalent lattice points is 
the multiplicity factor. For holohedral symmetry G, 
we can determine possible space groups of the speci- 
men and correct LF(hkl)12's from powder diffraction 
data because the intensities of all reciprocal-lattice 
points superposed by the symmetry operations are 
equal. However, those intensities are not equal for 
hemihedral symmetry L and we cannot obtain cor- 
rect IF(hkl)L2"s from powder diffraction unless the 
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crystal structure is known. Therefore, it is impossible 
for us to know if the observed intensities of an 
unknown structure are sums of equal intensities 
(holohedry) or of unequal ones (hemihedry or tetra- 
tohedry) and it is impossible to determine its Laue 
class. 

Since a powder diffraction data set in one- 
dimensional space is essentially a degenerate set of  
data from three-dimensional space and since Laue 
symmetries are symmetries in three-dimensional 
space, the problems are: (1) how to convert the 
one-dimensional data set to three-dimensional space, 
that is, how to distribute summed intensities among 
the reciprocal-lattice points; and (2) how to extract 
intrinsic information of three-dimensional space 
from one-dimensional data. 

Now, let the Laue symmetry in reciprocal space 
derived from diffraction of polycrystaUine materials 
be holohedral symmetry and let each reciprocal- 
lattice point be weighted by [F~(hkl)12+...+ 
IF2,(hkI)l 2 (n is the number of generators) because 
the information indicating hemihedral symmetry is 
lost in intensity data as indicated above. The sum is 
2nlF(hkl)l 2 for holohedral symmetry. For hemi- 
hedral or tetratohedral symmetry, the reciprocal lat- 
tice weighted by the summed IF(hkl)12's can be 
regarded as a superposition of 2n sets of the same 
reciprocal lattices weighted with the proper 
IF(hkl)12's and each of them are related by n extra 
generators g, of holohedral symmetry: 2n intensity 
data sets are superposed upon each other with the 
relationship caused by the generators g,. The holo- 
hedral symmetry assumed above can therefore be 
regarded as an apparent symmetry caused by g,'s in 
cases where the symmetry is hemihedral or tetrato- 
hedral. The superposed reciprocal lattice can there- 
fore be called a composite reciprocal lattice and the 
diffraction pattern of the composite reciprocal lattice 
is a composite diffraction pattern. Information on 
symmetry that can be derived from a composite 
reciprocal lattice is given in the next section. 

Symmetry derived from diffraction of polycrystailine 
materials 

The intensity of the diffracted beam is given by the 
following relations: 

IOR) = fP(u) exp (2TrlR • u)dvu, 

where R denotes a vector in a reciprocal space, P(u) 
is the Patterson function and dvu is the volume 
element in Patterson space. 

P(u) is expressed as 

P(u) = fd(r)d(u + r)dvr 

= d(r),d(r), 

where d(r),d(r) is the self-convolution of d(r), the 

distribution of scatterers of atoms at r. The inverse 
Fourier transform of I(R) is then 

fI(R)exp(-2zriR'r)dvR=d(r),d(r). (1) 

Since the term on the right of the formula is not  
equal to zero when r coincides with an interatomic 
vector, the Fourier transform of a diffraction pattern 
can be regarded as the vector set of  a structure. I(R) 
is replaced by I t (R)=  I I (R)-k- . . .  + I2,(R) for a com- 
posite diffraction pattern. Then, the left term is 
written 

f/~01) exp ( -  2zriR'r)dvR 

= fI~(R) exp ( -  2zriR • r)dvR + ... 

+ fI2~(R) exp ( -  2zriR • r)dVR. (2) 

As I2~(R)= I~(g,R), the 2n'th integral in the right 
term of (2) is written with the similar formula given 
by Ohsumi & Nowacki (1981): 

f l l (g ,R) exp ( -  2 ~rig,R" g,r)(1/[g,,I)dvg.R, 

where Ig, I = 1 and dvg.R=dvR. Then, the above 
formula is 

f l l (g ,R)  exp ( -  2~rig, R • gnr)dVR. 

Consequently, (2) is written 

fIlOR) exp -- (27rtR • r)dvg + ... 

+ fll(gnR) exp ( -  27rig,R • g,r)dvR 

= dx (r),dl(r) + ... + dl(g~r),dl(g,r). 

Thus, the Fourier transform of the intensity of the 
composite diffraction pattern is a sum of the consti- 
tuent d(r),d(r)'s and no interaction among them 
Occurs. 

When a specimen has holohedral symmetry G, its 
vector set derived from powder diffraction data is 
therefore a simple superposition of 2n holohedral 
vector sets, while, for a specimen with hemihedral or 
tetratohedral symmetry L, the derived vector set is a 
superposition of 2n hemihedral or tetratohedral 
vector sets that are related by n generators g,. The 
superposed vector set may be called a composite 
vector set. The extra generators gn play their symmet- 
rical roles as intrinsic characteristics for G. On the 
other hand, they do act as extrinsic characteristics 
for L. Consequently, the vectors between atoms 
related by g,'s exist in vector sets of G but no vectors 
related by g,,'s can be found in vector sets and 
composite vector sets of L. 

Fig. 1 shows the fundamental sets (the points of 
the general equivalent positions of 4/mmm and 4/m, 
respectively, Figs. 2(a) and (b) their vector sets. Fig. 
2(c) indicates the composite vector set of 4/m: one of 
the two vector sets given in Fig. 2(b) is transformed 
by the extra generator m parallel to c and then 
superposed on another one. Since Laue class 4/mmm 
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has additional mirror planes parallel to the fourfold 
axis, the vectors related by those mirror planes occur 
in the direction perpendicular to the mirrors, that is, 
along (100) and (110). No such vectors occur along 
those zones in the composite vector set (Fig. 2c). 
Therefore, if we evaluate Patterson functions P(u00) 
and P(uuO), we can distinguish whether the Laue 
class of the specimen is 4/m or 4/mmm. 

Fundamental sets of the four Laue classes 
belonging to hexagonal and trigonal systems are 
given in Fig. 3 and their vector set and composite 
vector sets are shown in Fig. 4. Identification of the 
four Laue classes is possible by the following pro- 
cess. Concentration of vectors along (100) and (110) 
should be examined to distinguish 6/mmm from 6/m 
and 3, and concentration along (100) or (110) to 
distinguish 3ml or 31m from the other three Laue 
classes, 6/mmm, 6/m and 3. Vectors generated by the 
mirror plane of 6/m are concentrated along (001), 
while no concentration occurs along (001) of the 
vector set of 3. 

o o  
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o 
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(a) (b) 
Fig. 1. Distribution of the points at general equivalent positions: 

(a) 4/mmm; (b) 4/m. 

Cubic Laue casses m3 and m3m can be distin- 
guished when the concentrations of the vectors are 
checked along the directions parallel to (110). A 
table was published by Buerger (1959) that lists the 
characteristics of the vector concentrations of the 230 
space groups. We can find details of the vector 
concentrations characteristic of the point symmetry 
corresponding to each Laue class and also that of 
each space group using the table. 

We have also to consider the superposition of 
reciprocal-lattice points caused by other metrical 
characteristics of a reciprocal lattice with symmetry 
higher than orthorhombic. Distances of reciprocal- 
lattice points from the origin are expressed with the 

(a) (b) 

(c) (d) 
Fig. 3. Distribution of the points at general equivalent positions: 

(a) 6/mmm; (b) 6/m; (c) 3ml; (d) 3. 
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(c) 
Fig. 2. Distribution of ends of vectors in vector space. The vectors 

perpendicular to e are shown. Single and double circles indicate 
double and quadruple weights of the vectors, respectively. The 
peaks at origins are not shown. (a) Vector set of 4/mmm. 
(b) Vector set of 4/m. (c) Superposition of the vector sets 4/m by 
the generator m, a composite vector set. 
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Fig. 4. Distribution of ends of vectors in vector space. The vectors 
perpendicular to c are shown. Single and double circles indicate 
double and quadruple weights of the vectors, respectively. The 
peaks at origins are not shown. (a) Vector set of 6/mmm. 
(b) Composite vector set of 6/m. (c) Composite vector set of 
]ml.  (d) Composite vector set of 3. 
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following relations for those cases: 

QI/2 = 1/d = (Na .2 + 12c'2) 1/2. 

The term 12c'2 is neglected for the cubic system. N is 
h 2 + k 2 + l 2 for cubic, h 2 + k 2 for tetragonal  and h 2 + 
hk  + k 2 for tr igonal and hexagonal  systems, respec- 
tively. Since indices h, k and l are integers, different 
combinat ions  of  h, k and  l give the same values for N 
and  give rise to superposit ion of  Debye-Scherrer  
lines (e.g. 333 and 511 reflections for the cubic 
lattice). For  evaluat ion of  the Pat terson funct ion we 
should exclude Debye,--Scherrer lines that  are super- 
posit ions of  lines caused by such metrical  charac- 
teristics of  the reciprocal lattice. 

Determina t ion  of  Laue classes f rom diffraction 
data  of  polycrystal l ine materials  is thus possible and 
it is now feasible to study crystal structures of  those 

materials  with the same process applied to single 
crystals. 

The authors  would like to express their gratitude 
to Dr  Charles  T. Prewitt, Director  of  the Geophy-  
sical Laboratory ,  Carnegie Inst i tut ion of  Wash-  
ington, for a critical reading of  the manuscript .  
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Abstract 
For the transition of the structure factors of benzil (B) to 
benzil (A), Colella [Acta Cryst. (1994), A50, 55--57] employs 
the relation 

Fa(h, k, I) = F B ( - h - k ,  k, - l ) ,  (1) 

i.e., in matrix notation, 

(h, k, /)a = HA 0) 
=lib -- 1 0 

0 --1 
= HsA 

= ( - h - k ,  k, - l ) .  (2) 

This relation is wrong since det (A) = 1. It is not a mapping 
onto an enantiomorph; for the change of handedness, det (A) 
must be -1.  Moreover, matrix A is an element of the related 
point group 321. Thus, the result is symmetrically equivalent 
to the starting set of structure factors. As a consequence, all 
arguments presented on the basis of (1) are invalid. 

To avoid confusion, it is convenient to give some further 
explanations with respect to the problem. 
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Enantiomorphic objects are defined by their symmetry; their 
symmetry operations are only proper rotations R, i.e. det (R) = 
1. The transition from one enantiomorph to the other is 
described by a pair of matrices (A, S). The application of 
(A, S) acts on the coordinates by 

X = (A, S ) - I x  = A - I ( x - s )  (3) 

and on the symmetry operations by 

(R, T) = (A, S)(R, T)(A, S) - l  
= {ARA-1, AT + [(E- A)RA-  1 ]S}. (4) 

For the mapping (A, S), det (A) must be equal to - 1 (see above). 
The simplest matrix of this type is the matrix for a center of 
inversion. It can be separated from any improper rotation. 
With this center of symmetry, the transformation relations can 
be simplified significantly: 

xj = S - X j ;  Rk = Rk; Tk = ( E - R k ) S - T k .  (5) 

Here, j counts the atoms in the unit cell and k the symmetry 
operations of the space group. Inserting these expressions into 
the structure-factor equation, we get the structure factor F of 
the enantiomorph: 

F(H) = F( - H) exp (27riBS) (6a) 
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